  home adding and subtracting fractions removing brackets 1 comparing fractions complex fractions decimals notes on the difference of 2 squares dividing fractions solving equations equivalent fractions exponents and roots factoring rules factoring polynomials factoring trinomials finding the least common multiples the meaning of fractions changing fractions to decimals graphing linear equations inequalities linear equations linear inequalities multiplying and dividing fractions multiplying fractions multiplying polynomials percents polynomials powers powers and roots quadratic equations quadratic expressions radicals rational expressions inequalities with fractions rationalizing denominators reducing fractions to lowest terms roots roots or radicals simplifying complex fractions simplifying fractions solving simple equations solving linear equations solving quadratic equations solving radical equations in one variable solving systems of equations using substitution straight lines subtracting fractions systems of linear equations trinomial squares
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

Many algebraic fractions are rational expressions, which are quotients of polynomialswith nonzero denominators. Examples include Properties for working with rational expressions are summarized next.

PROPERTIES OF RATIONAL EXPRESSIONS

For all mathematical expressions P , Q , R , and S , with Q and S 0. Fundamental property Addition Subtraction Multiplication Division

When using the fundamental property to write a rational expression inlowest terms, we may need to use the fact that For example, Reducing Rational Expressions

EXAMPLE

Write each rational expression in lowest terms, that is, reduce the expression as much as possible. Factor both the numerator and denominator in order to identify any commonfactors, which have a quotient of 1. The answer could also be written as 2x + 4 The answer cannot be further reduced.

CAUTION

One of the most common errors in algebra involves incorrect useof the fundamental property of rational expressions. Only common factors may be divided or “canceled.” It is essential to factor rational expressions beforewriting them in lowest terms. In Example 1(b), for instance, it is not correctto “cancel” k (or cancel k, or divide 12 by -3) because the additions and subtraction must be performed first. Here they cannot be performed, so it is notpossible to divide. After factoring, however, the fundamental property can beused to write the expression in lowest terms.